Plumas-Lassen Administrative Study Small Mammal Module

Project Leader Robin J. Innes¹

<u>Graduate Student</u> Jaya R. Smith¹

Principal Investigators

Douglas A. Kelt¹, Dirk H. VanVuren¹, and Michael L. Johnson²

¹University of California Davis Department of Wildlife, Fish, and Conservation Biology

> ²University of California Davis John Muir Institute of the Environment

Outline

Module objectives
Methods and results

Long-term grids
Landscape transects
Focal species biology
Dusky-footed woodrat
Northern flying squirrel

Module Objectives

- Habitat associations
- Demography
- Develop and test models
- Assess impacts of treatments
- Evaluate trends
- Methods: Live-trapping, vegetation sampling
 - Long-term grids
 - Landscape transects
- Evaluate focal species biology
- Methods: Live-trapping, vegetation sampling, radiotelemetry
 - Dusky-footed woodrat
 - Northern flying squirrel

Outline

Module objectives
Methods and results

Long-term grids
Landscape transects
Focal species biology
Dusky-footed woodrat
Northern flying squirrel

Methods: Long-term Grids

21 grids in 5 forest types, 12 placed in experimental plots

- 3 groups of 4 plots
 - Control
 - Group selection
 - Light thin (50% canopy cover)
 - Heavy thin (30% canopy cover)

Methods: Long-term Grids

Trapping array

- 100 Sherman traps, 10-m spacing
- **72** Tomahawk traps, 30-m spacing
- **2**.25 ha
- 1 session, 4 nights
- Sampled biannually

Results: Long-term Grids

- 2006 marked 4th year of pre-treatment data collection
- Several recent and upcoming publications
 - Habitat associations (Stephanie Coppeto)
 - Population dynamics and demographics (James Wilson)
- Captured 451 individuals of 11 species
 - Deer mice (*Peromyscus sp.*) and Chipmunks (*Tamias sp.*) most common

Results: Trends in Deer Mouse Abundance

- Macrohabitat and year explained 93% of variation (Coppeto et al., 2005)
- Microhabitat and year explained 69% of variation (Coppeto et al., 2005)

Survival affected by <u>winter severity</u> and <u>fall cone production</u> (Wilson et al., submitted)

Results: Trends in Chipmunk Abundance

- Macrohabitat and year explained 67% of variation (Coppeto et al., 2005)
- Microhabitat and year explained 70% of variation (Coppeto et al., 2005)
- Survival affected by <u>winter severity</u> (Wilson et al., submitted)

Future Trajectories: Long-term Grids

Treatments are scheduled for 2007

 Need to continue trapping for 2-5 yrs posttreatment to measure effects

- Several future publications
 - Impacts of treatments on small mammals
 - Vegetation
 - Microclimate
 - Fuel loads

Outline

Module objectives
Methods and results

Long-term grids
Landscape transects
Focal species biology
Dusky-footed woodrat
Northern flying squirrel

Methods: Landscape 50 m Transects 107 TU-3 Legend Landbird census points Watershed Boundary Treatment Unit Boundary Lakes Kilometers CHES

STUDY AREA
National Forest Boundary

Methods: Landscape Transects

All grids centered at Landbird Module census points

- Various forest types
- Trap design
 - 4 Sherman traps, 50-m spacing
 - **8** Tomahawk traps, 50-m spacing
 - **0.25** ha

■ 2 sessions, 4 nights

Results: Landscape Transects

- 2006 marked 1st year of data collection
- Captured 909 individuals of 11 species at 176 census points across 4 TUs

Average number of species varied across census points, transects, and TUs

TU-5 and TU-4 > TU-3 and TU-2

Results: Landscape Transects

15

Future Trajectories: Landscape Transects

Increase sample size

Future publications

 Integrate mammal abundance, species richness, and habitat association data with that of other modules

Outline

Module objectives
Methods and results
Long-term grids
Landscape transects
Focal species biology
Dusky-footed woodrat
Northern flying squirrel

Focal Species:

Dusky-footed woodrats Neotoma fuscipes

Habitat Associations and Home Range

Natural History

- Arboreal, nocturnal rodent
- Solitary, territorial
- **-** 215 grams
- Varied habitats
- Oak specialist
- Build "houses"

Woodrat Stick Houses

- Houses important for all life stages
 - Adults, subadults
 - Males, females
- Food storage
- Nurseries
- Protection
- Social communication

Objectives

To determine habitat associations

- Macrohabitat
 - Relationship with California black oak

Microhabitat

House-site selection

To determine space use, movement patterns, and social organization

- Home range/Core range
- Overlap

Study Area

Methods

Live-trapping
4 traps placed at each house
Radiotelemetry
Diurnal and nocturnal locations
Vegetation sampling

- Macrohabitat
 - Density of large oaks
- Microhabitat
 - 4 m radius plots centered at houses and random plots
 - 22 habitat variables

Microhabitat

Results: Woodrat Density

24

Results: Macrohabitat Associations

25

Results: Microhabitat Associations

- Large logs (+)
- Large stumps (+)
- Slope steepness (+)
- Mat-forming shrubs (-)
- Bare ground (-)

Results: Home Range

 Larger than other populations

Yearly differences

■ Males > females

Results: Overlap

Focal Species:

Northern Flying Squirrels Glaucomys sabrinus

Habitat Use and Home Range

Objectives

- 1. Quantify Den Trees
- 2. Home Range Estimates
- 3. Habitat Preference

Objectives

- 1. Quantify Den Trees
- 2. Home Range Estimates
- 3. Habitat Preference

Characterize and Measure Den Trees
Habitat Characteristics
Comparison Plots

Characterize and Measure Den Trees
 Species identification
 Measurement
 Identify den type
 Habitat Characteristics
 Comparison Plots

Characterize and Measure Den Trees
 Habitat Characteristics

 Measure all trees within 18m radius (0.1 hectare)
 Identify five most common shrubs
 Canopy readings

 Comparison Plots

Characterize and Measure Den Trees
 Habitat Characteristics
 Comparison plots

 Paired with den habitat surveys
 Same measurements

Den Trees

Common name	Average DBH (cm)	n
California Black Oak	29.5	12
White Fir	56.9	10
Douglas Fir	86.1	8
Red Fir	58.3	4
Big-leaf Maple	19	4
Incense Cedar	77	4
Jeffrey Pine	152	1
Ponderosa Pine	109	1

49% were in cavities
12% were external stick nests
39% were unidentified

Den Trees

of Dens

Tree classes

- Sapling (<10 cm DBH)
- Poletimber (10 27.9 cm DBH)
- Small Sawtimber (28 53.3 cm DBH)
- Large Sawtimber (≥53.4 cm DBH)
- Hardwoods (any size)

Black Oak Dens

29.5 cm (11.6 inch) DBH
N = 12
Five were snags
All identified dens were in cavities

White Fir Den Trees

59.6 cm (22.4 inch) DBH
N = 10
Smallest 14 cm (5.5 inch) DBH!
Three smallest dens were external, not cavity
Largest 102 cm (40 inch) DBH

Other Studies?

Bakker and Hastings (2002, Alaska)
29 to 173 cm DBH
Carey (2000, Pacific Northwest)
As small as 10 cm DBH
This study
13 to 152 cm DBH

Two Main Site Types

Higher Elevation Red and White Fir No Douglas Fir, Black Oak, Maple

Lower Elevation White Fir, Douglas Fir, Black Oak, Maple No Red Fir

Higher Elevation Sites and Lower Elevation Sites

Comparison Between Higher Elevation and Lower Elevation Sites

Number of dens:
 Higher Elevation = 12
 Lower Elevation = 30

Comparison Between Higher Elevation and Lower Elevation Sites

Number of dens:
 Higher Elevation = 12
 Lower Elevation = 30

Focus:

More Data from Higher Elevation Sites

Objectives

- 1. Quantify Den Trees
- 2. Home Range Estimates
- 3. Habitat preference

Home Range Estimators

Average home range size

- 17.56 hectares from Kernel Estimator
- 12.55 hectares from Minimum Convex Polygon Estimator

Objectives

- 1. Quantify Den Trees
- 2. Home Range Estimates
- 3. Habitat preference

Kernel Estimator

 Estimates animal's home range area

 Helps Identify:
 CORE USE AREAS, which are areas that an animal uses more frequently than other areas within its home range.

What Is Next?

To Identify Habitat Preference We Will Compare:

- 1. Core Use Areas with other areas in home range
- 2. Areas within and areas without the home range

Informed Management

Thank you! Any questions?